
1

Robotics With the XBC

Controller
Session 4

Instructor: David
Culp

Email:
culpd@cfbisd.edu

mailto:culpd@cfbisd.edu

2

Learning Goals

 The student will learn about
functions and modular
programming, using the IC
preprocessor, reading XBC buttons
and Botball functions.

3

Review

 if-then, statements

Loops….

 while

 for-next

•for (count = 100; count >=10; count-=10)

4

Review Continued…

 Variables
 Four main types
•int

•long

•float

•char

 Must have a name
•Letters, numbers and underscore allowed

•Must begin with a letter or the underscore

 Must be declared before use

 Local variables have precedence over global
variables

5

Analog sensors

 Return a range of values

 Use the analog and analog12 functions to
access.

 Cannot use analog port #7

 Battery voltage monitor

 power_level() function returns the current
battery voltage as a float.

 Ports 0 and 1 are “floating” ports for use
with the IR range finder.

6

A short review program…

void main()

{

float batt;

int power;

while (!b_button())

{

batt= power_level();

display_clear();

printf("Battery Voltage: %f", batt);

sleep(.1);

}

}

7

A short review assignment

 Modify the program so that once the „B‟
button is pressed the program enters a
for-next loop.

 The loop counts from –100 to 100 in
increments of 5 and sets the power of the
left and right motors to this value.

 There is a .1 second pause at the bottom
of the loop.

 Turn your motors off after the loop is
done.

8

void main()

{

float batt;

int power;

while (!b_button())

{

batt= power_level();

display_clear();

printf("Battery Voltage: %f", batt);

sleep(.1);

}

for (power = -100; power <=100; power +=5)

{

motor(0,power);

motor(2,power);

sleep(.1);

}

ao();

}

9

Functions in C

 A function is a separate block of code
with a unique name that does a particular
job.

 Functions let you chop up a long program
into named sections.

 Functions can accept parameters and
can return a result.

 All code belonging to a function is
contained in curly braces {}.

 We have already been using them!!

10

A very simple example…

void main()

{

print_hello();

}

void print_hello()

{

display_clear();

printf("Hello!!\n");

return;

}

11

Things to notice….

 The function had a name - “print_hello”
 Function names follow the same rules as

variable names.

 The void means the function will not
return a value.

 All the code belonging to the function was
contained in curly braces.

 The return keyword tells the function to
go back to where it came from. It was
optional in this case but enhances
readability.

12

Returning a value and
accepting parameters.

void main()

{

int a=10;

int b=20;

printf("Result = %d", add_two_numbers(a,b));

}

int add_two_numbers(int num1, int num2)

{

return num1+num2;

}

13

Things to notice…..

 The function definition:

int add_two_numbers(int num1, int num2)

 The preceding int means the function will return an int
value.

 The parameter definitions:

(int num1, int num2)

 Tells the compiler that this function accepts two int
paramters called num1 and num2.

 We can access those parameters by name.

 Parameters are local to the function.

 The return keyword returns the desired value back to the
caller. It MUST appear in any function that returns a
value.

 A function may return one and only one value.

14

Why use functions?

 Functions increase the readability
and portability of your programs.

 Allows much easier debugging.

 Allows you to reuse your code.

 Can shorten your overall program.

15

A short assignment

 Write a short program that has a
function called square that accepts
an integer number and returns an
integer number which is the
parameter squared.

 Print the result on the Gameboy
screen.

16

Possible solution:

void main()

{

int a=10;

printf("%d\n", square(a));

}

int square(int num)

{

return (num * num);

}

17

Another short assignment

 Start a new program and write four
functions called forward, back, left and
right.

 These functions accept an int number
which is the power level to set your
motors to.

 They return no value.

 Use the functions to cause your robot to
move around in any way you choose.

18

Getting started on the
assignment….

void main()

{

Your control code;

}

void forward(int power)

{

motor(0,power);

motor(2,power);

}

Other functions will go here….

19

The IC preprocessor

 The preprocessor processes an IC
file before it is sent to the compiler.

 Allows us to include functions from
other files and allows us to define
preprocessor macros.

 Can make our code more efficient
and much easier to read.

20

Including another IC file

 To bring in the functions from
another IC file use „#use‟ at the TOP
of the file.

Example: #use “botball.ic”

•Brings in all the functions and variables
defined in the file “botball.ic”

21

A practical example of #use

 Start a new IC file called “motorcontrol.ic”

 Take all of your motor control functions
and cut them from your last program.

 Paste these motor control functions into
the new source file and save it.

 At the top of your ORIGINAL program
place the statement #use
“motorcontrol.ic” at the VERY top.

 Download and run the program.

 The program should bring in
motorcontrol.ic and run normally.

22

What it should look like….

#use "motorcontrol.ic"

void main()

{

forward(100);

sleep(3.0);

ao();

printf("Done");

}

23

#define statements..

 #define statements allow us define preprocessor macros.

 A macro is local to the file in which it is defined

 Essentially it sets one item equal to something.

 Unlike variables they CANNOT be changed later.

 Before the program is compiled the preprocessor replaces
every instance of a macro name with its value.

 Examples:

 #define L 2

•Everywhere the word “L” appears in your IC
program file will get replaced with the number 2 just
before downloading.

 #define R 0

•Everywhere the word “R” appears in your IC
program file will get replaced with the number 0 just
before downloading.

24

The power of #define

 Allows you to set commonly used values
to easily read statements.

 Allows MUCH easier debugging as the
program is easier to read.

 Allows easy software changes.

 #define macro names are normally ALL
CAPITALS. This is not required but easily
distinguishes them from variables and
makes your code easy to read.

25

An example….

#define L 2

#define R 0

#define DELAY 3.5

void main()

{

motor(L, 100);

motor(R, 100);

sleep(DELAY);

ao();

}

26

A More Complex Example
#define ST 100
#define MAX 250
// This tests the function "adjust" which can be used to adjust parameters
void main()
{

int speed=ST,speed_f;
display_clear();
printf("Speed = parameter to adjust");
speed_f=adjust(1,speed,MAX);
display_set_xy(0,4);
printf("Final Speed= %d",speed_f);

}

int adjust(int y, int i, int m){ //uses direction pad to adjust 0 < i < m
//print at line y, i = variable parameter to adjust, m = max value;

while(!a_button()){// press A to finish
display_set_xy(0, y);
printf("parameter=%d, \n adjust w. Right-Left PAD\n press A to

end",i);
if(left_button()&& i>=5) i-=5;
if(right_button()&& i< m)i+=5;
sleep(.2);

}
return i;

}

27

Botball Functions…..

 To use functions specifically designed for
Botball #use “Botball.ic” at the top of
your program.

 Two main functions:
 wait_for_light(int port)
•Allows us to calibrate a light sensor on port and the

robot will wait until the starting light turns on to
begin execution

 shut_down_in (float seconds)
•The IC program downloaded will run for the

specified number of seconds and then shut down all
motor control and end the program.

28

A Typical Botball Program
#use "botball.ic"

#define L 2

#define R 0

#define LIGHT 5

void main()

{

wait_for_light(LIGHT);

shut_down_in(89.9);

play_botball();

}

void play_botball()

{

}

29

Reading XBC buttons

 Reading XBC buttons is very simple.

 Each function returns 0 if NOT pressed
and 1 if pressed.
 int a_button()

 int b_button()

 int up_button()

 int down_button()

 int right_button()

 int left_button()

 int r_button() –The top right button

 int l_button() –The top left button

 int any_button()

30

Your assignment

 In the last session we modified our demo-
bot by adding IR range sensors.

 Modify your bumper-bot program so that
you use functions and the pre-processor.
 Make four motor control functions and place

them in a separate file called
“motor_control.ic”.

 Include (#use) this file at the top of your
program.

 Use the preprocessor to #define macros for
the left and right motor and the left and right
IR sensor. You may also make a #define for
the minimum “hit” distance.

31

To Help You Get Started…

#use "motor_control.ic"

#define LEFT_SENSOR 1

#define MIN_RANGE 200

void main()

{

while(1)

{

do stuff in here;

}

}

32

motor_control.ic

#define LEFT_MOTOR 2

#define RIGHT_MOTOR 0

void forward()

{

fd(LEFT_MOTOR);

fd(RIGHT_MOTOR);

}

.

.

.

